
1

Robotics With the XBC

Controller
Session 4

Instructor: David
Culp

Email:
culpd@cfbisd.edu

mailto:culpd@cfbisd.edu

2

Learning Goals

 The student will learn about
functions and modular
programming, using the IC
preprocessor, reading XBC buttons
and Botball functions.

3

Review

 if-then, statements

Loops….

 while

 for-next

•for (count = 100; count >=10; count-=10)

4

Review Continued…

 Variables
 Four main types
•int

•long

•float

•char

 Must have a name
•Letters, numbers and underscore allowed

•Must begin with a letter or the underscore

 Must be declared before use

 Local variables have precedence over global
variables

5

Analog sensors

 Return a range of values

 Use the analog and analog12 functions to
access.

 Cannot use analog port #7

 Battery voltage monitor

 power_level() function returns the current
battery voltage as a float.

 Ports 0 and 1 are “floating” ports for use
with the IR range finder.

6

A short review program…

void main()

{

float batt;

int power;

while (!b_button())

{

batt= power_level();

display_clear();

printf("Battery Voltage: %f", batt);

sleep(.1);

}

}

7

A short review assignment

 Modify the program so that once the „B‟
button is pressed the program enters a
for-next loop.

 The loop counts from –100 to 100 in
increments of 5 and sets the power of the
left and right motors to this value.

 There is a .1 second pause at the bottom
of the loop.

 Turn your motors off after the loop is
done.

8

void main()

{

float batt;

int power;

while (!b_button())

{

batt= power_level();

display_clear();

printf("Battery Voltage: %f", batt);

sleep(.1);

}

for (power = -100; power <=100; power +=5)

{

motor(0,power);

motor(2,power);

sleep(.1);

}

ao();

}

9

Functions in C

 A function is a separate block of code
with a unique name that does a particular
job.

 Functions let you chop up a long program
into named sections.

 Functions can accept parameters and
can return a result.

 All code belonging to a function is
contained in curly braces {}.

 We have already been using them!!

10

A very simple example…

void main()

{

print_hello();

}

void print_hello()

{

display_clear();

printf("Hello!!\n");

return;

}

11

Things to notice….

 The function had a name - “print_hello”
 Function names follow the same rules as

variable names.

 The void means the function will not
return a value.

 All the code belonging to the function was
contained in curly braces.

 The return keyword tells the function to
go back to where it came from. It was
optional in this case but enhances
readability.

12

Returning a value and
accepting parameters.

void main()

{

int a=10;

int b=20;

printf("Result = %d", add_two_numbers(a,b));

}

int add_two_numbers(int num1, int num2)

{

return num1+num2;

}

13

Things to notice…..

 The function definition:

int add_two_numbers(int num1, int num2)

 The preceding int means the function will return an int
value.

 The parameter definitions:

(int num1, int num2)

 Tells the compiler that this function accepts two int
paramters called num1 and num2.

 We can access those parameters by name.

 Parameters are local to the function.

 The return keyword returns the desired value back to the
caller. It MUST appear in any function that returns a
value.

 A function may return one and only one value.

14

Why use functions?

 Functions increase the readability
and portability of your programs.

 Allows much easier debugging.

 Allows you to reuse your code.

 Can shorten your overall program.

15

A short assignment

 Write a short program that has a
function called square that accepts
an integer number and returns an
integer number which is the
parameter squared.

 Print the result on the Gameboy
screen.

16

Possible solution:

void main()

{

int a=10;

printf("%d\n", square(a));

}

int square(int num)

{

return (num * num);

}

17

Another short assignment

 Start a new program and write four
functions called forward, back, left and
right.

 These functions accept an int number
which is the power level to set your
motors to.

 They return no value.

 Use the functions to cause your robot to
move around in any way you choose.

18

Getting started on the
assignment….

void main()

{

Your control code;

}

void forward(int power)

{

motor(0,power);

motor(2,power);

}

Other functions will go here….

19

The IC preprocessor

 The preprocessor processes an IC
file before it is sent to the compiler.

 Allows us to include functions from
other files and allows us to define
preprocessor macros.

 Can make our code more efficient
and much easier to read.

20

Including another IC file

 To bring in the functions from
another IC file use „#use‟ at the TOP
of the file.

Example: #use “botball.ic”

•Brings in all the functions and variables
defined in the file “botball.ic”

21

A practical example of #use

 Start a new IC file called “motorcontrol.ic”

 Take all of your motor control functions
and cut them from your last program.

 Paste these motor control functions into
the new source file and save it.

 At the top of your ORIGINAL program
place the statement #use
“motorcontrol.ic” at the VERY top.

 Download and run the program.

 The program should bring in
motorcontrol.ic and run normally.

22

What it should look like….

#use "motorcontrol.ic"

void main()

{

forward(100);

sleep(3.0);

ao();

printf("Done");

}

23

#define statements..

 #define statements allow us define preprocessor macros.

 A macro is local to the file in which it is defined

 Essentially it sets one item equal to something.

 Unlike variables they CANNOT be changed later.

 Before the program is compiled the preprocessor replaces
every instance of a macro name with its value.

 Examples:

 #define L 2

•Everywhere the word “L” appears in your IC
program file will get replaced with the number 2 just
before downloading.

 #define R 0

•Everywhere the word “R” appears in your IC
program file will get replaced with the number 0 just
before downloading.

24

The power of #define

 Allows you to set commonly used values
to easily read statements.

 Allows MUCH easier debugging as the
program is easier to read.

 Allows easy software changes.

 #define macro names are normally ALL
CAPITALS. This is not required but easily
distinguishes them from variables and
makes your code easy to read.

25

An example….

#define L 2

#define R 0

#define DELAY 3.5

void main()

{

motor(L, 100);

motor(R, 100);

sleep(DELAY);

ao();

}

26

A More Complex Example
#define ST 100
#define MAX 250
// This tests the function "adjust" which can be used to adjust parameters
void main()
{

int speed=ST,speed_f;
display_clear();
printf("Speed = parameter to adjust");
speed_f=adjust(1,speed,MAX);
display_set_xy(0,4);
printf("Final Speed= %d",speed_f);

}

int adjust(int y, int i, int m){ //uses direction pad to adjust 0 < i < m
//print at line y, i = variable parameter to adjust, m = max value;

while(!a_button()){// press A to finish
display_set_xy(0, y);
printf("parameter=%d, \n adjust w. Right-Left PAD\n press A to

end",i);
if(left_button()&& i>=5) i-=5;
if(right_button()&& i< m)i+=5;
sleep(.2);

}
return i;

}

27

Botball Functions…..

 To use functions specifically designed for
Botball #use “Botball.ic” at the top of
your program.

 Two main functions:
 wait_for_light(int port)
•Allows us to calibrate a light sensor on port and the

robot will wait until the starting light turns on to
begin execution

 shut_down_in (float seconds)
•The IC program downloaded will run for the

specified number of seconds and then shut down all
motor control and end the program.

28

A Typical Botball Program
#use "botball.ic"

#define L 2

#define R 0

#define LIGHT 5

void main()

{

wait_for_light(LIGHT);

shut_down_in(89.9);

play_botball();

}

void play_botball()

{

}

29

Reading XBC buttons

 Reading XBC buttons is very simple.

 Each function returns 0 if NOT pressed
and 1 if pressed.
 int a_button()

 int b_button()

 int up_button()

 int down_button()

 int right_button()

 int left_button()

 int r_button() –The top right button

 int l_button() –The top left button

 int any_button()

30

Your assignment

 In the last session we modified our demo-
bot by adding IR range sensors.

 Modify your bumper-bot program so that
you use functions and the pre-processor.
 Make four motor control functions and place

them in a separate file called
“motor_control.ic”.

 Include (#use) this file at the top of your
program.

 Use the preprocessor to #define macros for
the left and right motor and the left and right
IR sensor. You may also make a #define for
the minimum “hit” distance.

31

To Help You Get Started…

#use "motor_control.ic"

#define LEFT_SENSOR 1

#define MIN_RANGE 200

void main()

{

while(1)

{

do stuff in here;

}

}

32

motor_control.ic

#define LEFT_MOTOR 2

#define RIGHT_MOTOR 0

void forward()

{

fd(LEFT_MOTOR);

fd(RIGHT_MOTOR);

}

.

.

.

